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Abstract. The integral equation approach of Klitsner and co-workers for boundary limited 
thermal conductance is adapted for calculating the surface temperature profile of wide slab- 
shaped samples in which the temperature is independent of the large dimension transverse 
to the direction of heat flow. It is used to model the surface temperature of a silicon water in 
which a hot ?DEG is embedded. Noteworthy features emerging from this simulation are 
temperature discontinuities at the edges of the heat source and sink with the temperature 
gradient nearby being non-uniform, marked differences between the temperature profiles 
of the opposite faces, and the existence of a finite thermal gradient in regions where there is 
no net heat flux. 

1. Introduction 

The theory of thermal conduction by phonons in the boundary scattering regime, 
first proposed by Casimir (1938), is now well established and has found abundant 
experimental support (Berman et a1 1953, 1955, Klitsner and Pohl 1987). A central 
assumption of the theory is that in the steady state each element of the surface of a 
sample is in thermal equilibrium, absorbing all incident radiation and re-emitting as a 
black body at the same rate. Experimental evidence for this thermalisation has been 
found at many surfaces (see, e.g., Trumpp and Eisenmenger 1977, Kenmuir et a1 1987), 
but its origin is not well understood. It seems clear that intrinsic processes are too weak 
to produce this thermalisation. The defects that are responsible, and that are also likely 
to be the cause of the anomalous Kapitza conductance between solids and liquid helium, 
have been the subject of considerable speculation. We note that the good agreement 
between the Casimir theory and thermal conductivity experiments on samples with 
rough surfaces is in itself not evidence for thermalisation, since strong elastic scattering 
at the surfaces would lead to essentially the same heat flow. 
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Figure 1. The sample geometry. The thermometer measuring T, is directly opposite the 
heater, and T,  is downstream where the thermal gradient is uniform. 

The conventional approach to Casimir's theory is as follows: a uniform thermal 
gradient is assumed to exist along the axis of a rod-shaped sample. Simple angular 
integrals are then evaluated to obtain the net phonon flux passing through a section 
normal to the sample's axis. From this the thermal conductivity K and phonon mean 
free path 1 are deduced, both of which are sample size dependent quantities rather than 
bulk properties of the medium. Extensions to the theory have been carried out by a 
number of investogators, to allow for a proportion of specular reflection at the surfaces 
and finite sample lengths (Berman el a1 1953, 1955), various shapes of cross section 
(Wybourne et a1 1984, Eddison and Wybourne 1985), and phonon focusing (McCurdy 
et a1 1970). 

There are, however, situations where a uniform thermal gradient is not assured, and 
the temperature profile of the sample itself has to be treated as unknown apart from 
certain boundary constraints. In a recent paper Klitsner et a1 (1988) have taken a more 
general approach to the Casimir theory by establishing an integral equation for the 
surface temperature profile of a sample based on the condition of local radiative equi- 
librium. By means of this equation they are able to explain a pronounced dependence 
of their measured thermal conductivities of long, polished silicon rods on the placement 
of heater and thermometers. 

In order to gain a more quantitative understanding of our recent measurements 
of the directional dependence of the phonon emission from two-dimensional electron 
gases (~DEGS)  in the inversion layer of silicon MOSFETS (Hewett et a1 1989), we 
have had recourse to an approach that is similar to that of Klitsner et a1 (1988). 
A typical sample in our experiments has the form of a rectangular wafer 0.38 mm 
thick, 5 mm wide and of effective length 10 mm as shown in figure 1. The ZDEG is 
a narrow strip (1 mm wide) located inside the upper face and extending across 
much of the width (3"). The sample sits in a vacuum, heat is generated by 
passing an electrical current through the 2DEG, and one end of the sample acts as 
a heat sink with the temperature fixed at around 1 K. Since silicon of this thickness 
is transparent to phonons of frequency less than 1500GHz, we can obtain 
information about the directional dependence of the phonon emission from the 
ZDEG by investigating the temperature distribution on the opposite face of the 
sample. We are concerned with how this distribution is affected by the angular 
distribution of the phonons emitted by the 2DEG under steady state conditions. 

In this paper we consider various models for phonon emission by the ~ D E G .  An 
integral equation similar to that of Klitsner et a1 (1988) is established for the surface 
temperature of our sample, and is solved by a finite element method. We find that in the 
region midway between the heat source and sink there is an approximately uniform 
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thermal gradient as expected. Elsewhere, however, there are significant deviations from 
this simple behaviour. The temperature profiles of the opposite faces are not in general 
identical, there are temperature discontinuities, and a thermal gradient exists in a region 
where there is no net heat flux. 

2. Analysis and model 1 

To simplify the analysis we assume that power is injected uniformly along the length of 
the ~ D E G  heater (this is not necessarily true for a 2DEG in the presence of an applied 
magnetic field), and that because of the large width to thickness ratio of the sample, the 
edges play a negligible role in determining the temperature profile, and that the surface 
temperature is therefore independent of z (see figure 1). The problem thereby becomes 
one-dimensional, that of determining the temperature dependence T(s) ,  where s is the 
distance measured around the sample as shown in figure 1. Since heat enters only at one 
face, the temperature profiles for the two faces are not necessarily the same, i.e. Tcannot 
be regarded as a function of x rather than of s. 

In our first model we assume the ZDEG coincides with the upper face and that the 
heat is generated within this surface. We take the entire heater area to be at a fixed 
temperature Th and the heat sink area of the sample to be at a slightly lower temperature 
T,. These are the only regions where heat can enter or leave the sample, and we assume 
there is no significant heat flow within the surface. It follows that under steady state 
conditions the temperature profile T(s) of the remainder of the surface is such that each 
surface element, radiating as a black body, emits the same total energy flux as it receives 
from all other surface elements, including the heat source and sink. No account is taken 
of specular reflections, which are not expected to be important under the operating 
conditions we are concerned with. 

The energy flux emitted by a surface element dA at a temperature Ttowards another 
surface element located at an angle q to the surface normal at dA,  and subtending solid 
angle dQ is given by (Berman et a1 1953) 

d F = Q T 4 c o s g , d A d Q  (1) 
and Q is a constant for the system. Integration with respect to z yields the total flux 
emitted by dA at positions towards an infinitely long strip of width ds’ at s’, which is at 
an angle O(s’) to the normal at dA and which is of angular width d0 = (de/&’) ds’,  

d H  = (n/2)Q( T ( s ) ) ~  dA COS 0 de .  (2) 

The principle of detailed balance requires that the radiation received by dA from that 
strip is given by a similar expression, but with T(s)  replaced by T(s’). Integrating these 
expressions with respect to s‘, equating, and eliminating terms quadratic and of higher 
order in 6T = T - T,, leads to the integral equation 

d 0  
d s  ST(s) = 4 6T(s’)  cos O(s’) 7 ds’ 

alls’ 
(3) 

which determines the temperature ST(s) at all points s where the temperature is not 
fixed. 

For computational purposes we have converted this integral equation into a set of 
linear equations by partitioning the surface into N = 208 parallel strips of approximately 
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Figure 2. Relative temperature GTversus distance x for: (a )  model 1, all heater elements at 
same temperature; ( b )  model 2, equal power dissipation in all heater elements. 

equal width. (We have done calculations with other numbers of strips, obtaining results 
substantially in agreement with those reported below). The heat sink comprises four of 
these strips for which 6 T  = 0 and the heated surface region another 10 for which 6T  = 
1 in units of Th - T,. The temperatures of the remaining A4 = 194 strips are determined 
by the equations 

N 

6T ,  = W,,' 6Tsr s = 1, .  , . , M  
s ' = l  

where 

G, COS Os,, 6O,,. s Z s '  

s = s t .  

and G, = 4 is a normalisation constant ensuring that 

WSd = { 

WS,' = 1. 
S '  

(4) 

We employ an iterative procedure to solve these equations, starting with assumed 
values of 6Ts,  updating 6T, using equation (4) ,  and repeating the cycle until convergence 
is obtained, which takes a few hundred iterations. 

The results of the calculation are shown in figure 2(a). They reveal that in the region 
midway between heat souce  and sink the two faces of the sample are at the same 
temperature, and there is a uniform thermal gradient along the surface, as expected. 
The magnitude of this thermal gradient agrees, to within a few per cent, with the average 
gradient obtained by dividing the temperature difference between source and sink by 
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the distance, As, between their midpoints. Some other features of the temperature 
profile are, however, more surprising. Sizable temperature discontinuities occur at the 
edges of the heat source and sink, and nearby the surface temperature gradients are 
non-uniform. Neat to the heat source the temperatures of the opposite faces differ 
appreciably. In the region of the slab remote from the heat sink, there is a finite surface 
temperature gradient, even though the net heat flux in the x direction there is zero. 

These latter features require some explanation as they appear to be in conflict with 
elementary thermal conduction ideas. The crux of the matter is that under the low 
temperature conditions to which our model is applicable, there is no significant bulk 
scattering of phonons, and hence no mechanism by which local thermal equilibrium can 
be established in the bulk. In contrast, the defective nature of the surface is assumed to 
bring about sufficient scattering for thermal equilibrium to be established in the surface 
(or more precisely, in a thin layer, comparable in thickness to the heights of the surface 
asperities, at the surface). So, while it makes sense to talk of a surface temperature 
profile, bulk temperature has no meaning, in the strict sense, in this situation. Certainly 
there are fluxes of phonons passing in all directions through any point in the bulk, but 
each of these fluxes originates at some point on the surface, and has a Planck spectral 
composition corresponding to the temperature of that surface point. A unique tem- 
perature cannot be ascribed to any point in the bulk, and it follows that the formalism 
of bulk thermal conduction does not apply. True, some investigators of Casimir con- 
duction do define a sample conductivity in terms of the integrated heat flux along the 
axis and the temperature difference between the ends of the sample, but this is a sample 
size dependent quantity and cannot righly be considered a bulk property of the medium. 

Our model concerns radiation in an enclosure, and it is on this basis that the results 
are to be understood. One region of the surface of this enclosure is constrained to be at 
a temperature 6T  = 1 and another region at 6 T  = 0. Heat balance ensures that all 
other points on the surface, no matter where they are located, come to equilibrium at 
temperatures intermediate between these two extremes. The relative influence of the 
two constrained regions on the temperature at a particular point depends to a large 
extent on the solid angles subtended by those regions at that point. This explains why 
the surface temperature falls steadily from the heater towards the sink and also why it 
decreases in the region beyond the heater remote from the sink. Directly opposite the 
heater, the solid angle subtended by the heater is by far the larger, but towards the end 
the two solid angles become comparable. In this remote region the integrated heat flux 
through any cross section is zero, but this does not imply that the flux is zero at all points 
on such a section. 

Consider now two adjacent surface elements, one on either side of a boundary of the 
heater. They both, because of their geometrical situation, receive almost identical 
amounts of radiant heat from all other surface elements. The heater element in addition 
draws heat from its external source. These quantities all scale with the areas of the 
elements. Both elements must dispose of their net heat input by radiation, and so there 
is necessarily a finite temperature difference between the two elements, which persists 
even when the two elements are reduced in size to zero. This explains the temperature 
discontinuities that are evident in figure 2(a).  Of course, if one were to reformulate the 
problem and treat the surface as a very thin layer in which thermal equilibrium is 
established, then the temperature drop would not be discontinuous, but would extend 
over a distance comparable to the thickness of the layer. Existing measuring techniques 
would not, however, be able to distinguish between such a narrow transitional region 
and a true discontinuity. Because of the low effective thermal conductivity and thinness 
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of the surface layer, a negligible amount of heat is conducted along this layer in spite of 
the high thermal gradient in the transitional region. 

3. Model2 

In this second model we assume that the heater power is distributed uniformly over the 
heater area. This relaxes the constraint that the heater area is at a fixed temperature (the 
sink though it still taken to be at a fixed temperature T,). The temperature of each 
surface element is now determined by the condition that the power emitted from it 
equals the power absorbed from the other elements plus (for the heater surface elements) 
the external power dissipation P. The linear equations determining the temperature 
profile now take the form 

where K, (= G, P in this case) is a source term. 
The results obtained using this model are shown in figure 2(b). There is, as expected, 

a uniform temperature gradient in the region midway between the heater and the sink, 
but the temperature profile in the vicinity of the heater is qualitatively different from 
that of the isothermal heater. The discontinuities in the temperature of the upper face 
are reduced, and the temperatures of the two faces are now much closer, indeed almost 
identical, at the centre of the heater. This is evidently the result of the very high aspect 
ratio which causes the temperature of an element to be largely determined by the 
temperatures of those directly opposite to it. 

We have also calculated the surface temperature distribution for a heater at x = 0 
and, as expected, find that the linear region now extends to around x = 1 mm and that 
the temperature at x = 1.5 mm has the value obtained by extrapolating the linear regions 
in figures 2(b). 

4. Model3 

We next consider the phonon emission from a hot 2DEG treated as a separate radiating 
surface. This radiation is known to be largely restricted to a cone of directions close to 
the normal by the need to conserve momentum in the plane of the ~ D E G  (Rothenfusser 
et a1 1986, Challis et a1 1987). We have investigated the effect of this by introducing a 
cut-off to the energy flux from the ~ D E G  for 8 > 8, while keeping the total heat output 
fixed. The ~ D E G  lies just below the upper surface, so the only upper surface elements 
directly illuminated by the ZDEG are those immediately above it. The illumination of the 
end and lower surface elements depends on the value of 8,. The model assumes that 
phonons that are subsequently emitted by all surface elements (including those of the 
Si/Si02interface above the zDEG) are able topass through the ~ D E G .  Phonon attenuation 
does take place in a ZDEG, but it is only of the order of a few per cent (see, e.g., Hensel 
et a1 1984, Kent et a1 1988). The temperature distributions on the two faces for 8, = 1" 
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are shown in figure 3 and compared with the isotropic case ( BC = 900). The temperatures 
at x > 5 mm (> 1 mm from the centre of the 2DEG heater) are virtually independent of 
8, as expected, while the maximum temperature on the lower face opposite the heater 
at x = 4 mm increases with decreasing BC as a result of the increasingly concentrated 
intensity in the forward direction. Figure 4 shows the fractional change in the tem- 
perature 6Tm at x = 4 mm as a function of BC. 

We may compare the 2% change in 6Tm with that seen experimentally. The cone 
angle Bc within which the phonons are largely emitted can be varied over a wide range 
by adjusting the gate potential on the Si MOSFET. The maximum change in temperature 
observed (relative to the end of the sample) was -2% (Hewett et a1 1989), so there is 
quite good agreement. We plan in a later paper to examine the effect of phonon focusing, 
which we expect to modify the effect. 
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